

Abstracts

Optimal Field Theory Design of Stepped E-Plane Finned Waveguide Transformers of Different Inner Cross-Sections

J. Bornemann and F. Arndt. "Optimal Field Theory Design of Stepped E-Plane Finned Waveguide Transformers of Different Inner Cross-Sections." 1990 MTT-S International Microwave Symposium Digest 90.3 (1990 Vol. III [MWSYM]): 1071-1074.

This paper presents a new design of broadband double-stepped ridged and all-metal finned waveguide transformers which combines the advantage of constant ridge thickness with that of the optimum matching potential of different waveguide inner cross-section dimensions. Based on the modal scattering matrix method, the rigorous design takes into account the influences of both, the finite ridge or fin thicknesses and the higher-order mode interaction at all discontinuities. Computer optimized design data are given for compact transformers for WR112 and WR42 input waveguides achieving a return loss of more than 33dB for the whole waveguide bands. The theory is verified by measurements.

[Return to main document.](#)